A new universality class describes Vicsek’s flocking phase in physical dimensions (2024)

Patrick Jentschp.jentsch20@imperial.ac.ukDepartment of Bioengineering, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K.  Chiu Fan Leec.lee@imperial.ac.ukDepartment of Bioengineering, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K.

(February 2, 2024)

Abstract

The Vicsek simulation model of flocking together with its theoretical treatment by Toner and Tu in 1995 were two foundational cornerstones of active matter physics. However, despite the field’s tremendous progress, the actual universality class (UC) governing the scaling behavior of Viscek’s “flocking” phase remains elusive. Here, we use nonperturbative, functional renormalization group methods to analyze, numerically and analytically, a simplified version of the Toner-Tu model, and uncover a novel UC with scaling exponents that agree remarkably well with the values obtained in a recent simulation study by Mahault et al.[Phys.Rev.Lett.123, 218001 (2019)], in both two and three spatial dimensions. We therefore believe that there is strong evidence that the UC uncovered here describes Vicsek’s flocking phase.

Two papers in 1995 arguably led to the advent of active matter physics, which has in many ways revolutionized nonequilibrium, soft matter, and biological physics: Ref. [1] studied the order-disorder transition of an active XY𝑋𝑌XYitalic_X italic_Y model in two dimensions (2D) using a simulation model now commonly known as the Vicsek model; inspired by the appearance of an ordered (or “flocking”) phase in 2D (forbidden by the Mermin-Wagner-Hohenberg theorem in thermal systems), Toner and Tuintroduced a set of hydrodynamic equations of motion (EOM) for generic polar active fluids in Ref.[2], now known as the Toner-Tu (TT) model, and investigated the scaling behavior of such a flocking phase using a renormalization group (RG) analysis. Intriguingly, controversies soon emerged regarding these two landmark studies: the critical order-disorder transition, the focus of Ref.[1], was found to be pre-empted by a discontinuous phase transition [3]; the RG study performed in Ref.[2] was found to be incomplete due to neglected nonlinearities in the original analysis [4]. More recently, an extensive simulation study [5] of Vicsek’s flocking phase has provided estimates for the scaling exponents that deviate significantly from the original predictions of Ref.[2].As a result, the question of what universality class (UC) actually describes Vicsek’s flocking phase remains open. Indeed, a solution has been widely considered to be intractable using current RG methodology due to its inherent complexity [4].

Spatial dimension (d𝑑ditalic_d)

χ𝜒\chiitalic_χ

z𝑧zitalic_z

ζ𝜁\zetaitalic_ζ

d=2::𝑑2absentd=2:italic_d = 2 :

this paper

0.3250.325-0.325- 0.325

1.3251.3251.3251.325

0.9750.9750.9750.975

Vicsek simulation [5]

0.31(2)0.312-0.31(2)- 0.31 ( 2 )

1.33(2)1.3321.33(2)1.33 ( 2 )

0.95(2)0.9520.95(2)0.95 ( 2 )

incompressible [6, 7]

0.230.23{-0.23}- 0.23

1.11.1{1.1}1.1

0.670.67{0.67}0.67

TT 95 / Malthusian [8]

0.200.20-0.20- 0.20

1.201.201.201.20

0.60.60.60.6

d=3::𝑑3absentd=3:italic_d = 3 :

this paper

0.650.65-0.65- 0.65

1.651.651.651.65

0.950.950.950.95

Vicsek simulation [5]

0.620.62-0.62- 0.62

1.771.771.771.77

1111

TT 95 / incompressible [2, 9]

0.600.60-0.60- 0.60

1.601.601.601.60

0.80.80.80.8

Malthusian [10]

0.45(2)0.452-0.45(2)- 0.45 ( 2 )

1.45(2)1.4521.45(2)1.45 ( 2 )

0.73(1)0.7310.73(1)0.73 ( 1 )

Here, we made a significant step forward in tackling the above question using a functional renormalization group (FRG) [11, 12, 13, 14, 15, 16, 17, 18] analysis. Specifically, starting with a simplified version of the general TT EOM, our FRG calculation leads to a set of scaling relations that enable us to solve for the three scaling exponents: roughness exponent (χ𝜒\chiitalic_χ), dynamic exponent (z𝑧zitalic_z), and anisotropy exponent (ζ)𝜁(\zeta)( italic_ζ ), which characterize the UC of the flocking phase.

Using the rescaling convention,

(t,𝐫,x,δ𝐠,δρ)(tezl,𝐫el,xeζl,δ𝐠eχl,δρeχl),𝑡subscript𝐫bottom𝑥𝛿𝐠𝛿𝜌𝑡superscript𝑒𝑧𝑙subscript𝐫bottomsuperscript𝑒𝑙𝑥superscript𝑒𝜁𝑙𝛿𝐠superscript𝑒𝜒𝑙𝛿𝜌superscript𝑒𝜒𝑙(t,\mathbf{r}_{\bot},x,\delta\mathbf{g},\delta\rho)\rightarrow(te^{zl},\mathbf%{r}_{\bot}e^{l},xe^{\zeta l},\delta\mathbf{g}e^{\chi l},\delta\rho e^{\chi l})\ ,( italic_t , bold_r start_POSTSUBSCRIPT ⊥ end_POSTSUBSCRIPT , italic_x , italic_δ bold_g , italic_δ italic_ρ ) → ( italic_t italic_e start_POSTSUPERSCRIPT italic_z italic_l end_POSTSUPERSCRIPT , bold_r start_POSTSUBSCRIPT ⊥ end_POSTSUBSCRIPT italic_e start_POSTSUPERSCRIPT italic_l end_POSTSUPERSCRIPT , italic_x italic_e start_POSTSUPERSCRIPT italic_ζ italic_l end_POSTSUPERSCRIPT , italic_δ bold_g italic_e start_POSTSUPERSCRIPT italic_χ italic_l end_POSTSUPERSCRIPT , italic_δ italic_ρ italic_e start_POSTSUPERSCRIPT italic_χ italic_l end_POSTSUPERSCRIPT ) ,(1)

where, without loss of generality, the flocking direction is chosen to be along the x𝑥xitalic_x-axis,these novel exponents are:

χ=13(1d)40,z=27+13d40,ζ=41d40,formulae-sequence𝜒131𝑑40formulae-sequence𝑧2713𝑑40𝜁41𝑑40\chi=\frac{13(1-d)}{40}\ ,\ \ z=\frac{27+13d}{40}\ ,\ \ \zeta=\frac{41-d}{40}%\ ,\\italic_χ = divide start_ARG 13 ( 1 - italic_d ) end_ARG start_ARG 40 end_ARG , italic_z = divide start_ARG 27 + 13 italic_d end_ARG start_ARG 40 end_ARG , italic_ζ = divide start_ARG 41 - italic_d end_ARG start_ARG 40 end_ARG ,(2)

for d<11/3𝑑113d<11/3italic_d < 11 / 3 where d𝑑ditalic_d is the spatial dimension. Remarkably, the values of these exponents agree very well with the simulation results in both two and three dimensions (falling within the given simulation errors, see Table 1). Therefore, we believe that the new UC uncovered here describes the ordered phase of the Vicsek model.

A new universality class describes Vicsek’s flocking phase in physical dimensions (1)

Simplified Toner-Tu model.—We start with the celebrated TT EOM that describe generic compressible polar active fluids, derived simply from considering the underlying conservation law and symmetries of the system [2, 19, 4]:

tρsubscript𝑡𝜌\displaystyle\partial_{t}\rho∂ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT italic_ρ+𝐠=0,𝐠0\displaystyle+\nabla\cdot\mathbf{g}=0\ ,+ ∇ ⋅ bold_g = 0 ,(3)
t𝐠subscript𝑡𝐠\displaystyle\partial_{t}\mathbf{g}∂ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT bold_g+λ1(𝐠)𝐠+λ2𝐠(𝐠)+λ32(|𝐠|2)=U𝐠subscript𝜆1𝐠𝐠subscript𝜆2𝐠𝐠subscript𝜆32superscript𝐠2𝑈𝐠\displaystyle+\lambda_{1}(\mathbf{g}\cdot\nabla)\mathbf{g}+{\lambda_{2}\mathbf%{g}(\nabla\cdot\mathbf{g})+\frac{\lambda_{3}}{2}{\bf\nabla}(|\mathbf{g}|^{2})}%=-U\mathbf{g}+ italic_λ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( bold_g ⋅ ∇ ) bold_g + italic_λ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT bold_g ( ∇ ⋅ bold_g ) + divide start_ARG italic_λ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_ARG start_ARG 2 end_ARG ∇ ( | bold_g | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) = - italic_U bold_g
+μ12𝐠+μ2(𝐠)+μ3(𝐠)2𝐠subscript𝜇1superscript2𝐠subscript𝜇2𝐠subscript𝜇3superscript𝐠2𝐠\displaystyle+\mu_{1}\nabla^{2}\mathbf{g}+\mu_{2}\nabla(\nabla\cdot\mathbf{g})%+\mu_{3}(\mathbf{g}\cdot\nabla)^{2}\mathbf{g}+ italic_μ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∇ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT bold_g + italic_μ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ∇ ( ∇ ⋅ bold_g ) + italic_μ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( bold_g ⋅ ∇ ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT bold_g
P1𝐠(𝐠)P2+h.o.t.+𝐟+𝐐,formulae-sequencesubscript𝑃1𝐠𝐠subscript𝑃2hot𝐟𝐐\displaystyle-{\nabla P_{1}}-\mathbf{g}(\mathbf{g}\cdot\nabla){P_{2}}+\mathrm{%h.o.t.}+\mathbf{f}+{\bf Q}\ ,- ∇ italic_P start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT - bold_g ( bold_g ⋅ ∇ ) italic_P start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT + roman_h . roman_o . roman_t . + bold_f + bold_Q ,(4)

where ρ𝜌\rhoitalic_ρ is the mass density field and 𝐠𝐠\mathbf{g}bold_g is the momentum density field. Note that instead of using the velocity density field as one of the two hydrodynamic variables in the original formulation [2, 19], we have opted for the momentum field. The physics of course remains the same but this choice has the virtue of simplifying the continuity equation (3) by rendering it linear.In the EOM of 𝐠𝐠\mathbf{g}bold_g (A new universality class describes Vicsek’s flocking phase in physical dimensions), all coefficients are generic functions of ρ𝜌\rhoitalic_ρ and |𝐠|𝐠|\mathbf{g}|| bold_g |, the “pressure” terms P𝑃Pitalic_P’s are functions of ρ𝜌\rhoitalic_ρ:

P1=n1κn(ρρ0)n,P2=n1νn(ρρ0)n,P_{1}=\sum_{n\geq 1}\kappa_{n}(\rho-\rho_{0})^{n}\ \ ,\ \ P_{2}=\sum_{n\geq 1}%\nu_{n}(\rho-\rho_{0})^{n}\ ,italic_P start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = ∑ start_POSTSUBSCRIPT italic_n ≥ 1 end_POSTSUBSCRIPT italic_κ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( italic_ρ - italic_ρ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT , italic_P start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = ∑ start_POSTSUBSCRIPT italic_n ≥ 1 end_POSTSUBSCRIPT italic_ν start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( italic_ρ - italic_ρ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ,(5)

where ρ0subscript𝜌0\rho_{0}italic_ρ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT is the mean density, and the coefficients κnsubscript𝜅𝑛\kappa_{n}italic_κ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT’s and νnsubscript𝜈𝑛\nu_{n}italic_ν start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT’s are themselves functions of |𝐠|𝐠|\mathbf{g}|| bold_g |.Furthermore, “h.o.t.” in Eq.(A new universality class describes Vicsek’s flocking phase in physical dimensions) denotes higher order terms in spatial derivatives (e.g., 4𝐠superscript4𝐠\nabla^{4}\mathbf{g}∇ start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT bold_g, etc) that are irrelevant to our discussion, and the noise term 𝐟𝐟\mathbf{f}bold_f is Gaussian with vanishing mean and statistics:

fi(𝐫,t)fj(𝐫,t)=2Dδijδd+1(tt,𝐫𝐫).delimited-⟨⟩subscript𝑓𝑖𝐫𝑡subscript𝑓𝑗superscript𝐫superscript𝑡2𝐷subscript𝛿𝑖𝑗superscript𝛿𝑑1𝑡superscript𝑡𝐫superscript𝐫\langle f_{i}(\mathbf{r},t)f_{j}(\mathbf{r}^{\prime},t^{\prime})\rangle=2D%\delta_{ij}\delta^{d+1}(t-t^{\prime},\mathbf{r}-\mathbf{r}^{\prime})\ .⟨ italic_f start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( bold_r , italic_t ) italic_f start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ( bold_r start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , italic_t start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) ⟩ = 2 italic_D italic_δ start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT italic_δ start_POSTSUPERSCRIPT italic_d + 1 end_POSTSUPERSCRIPT ( italic_t - italic_t start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , bold_r - bold_r start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) .(6)

Finally, in addition to the usual terms, we have also introduced the Lagrange multiplier 𝐐𝐐{\bf Q}bold_Q in Eq.(A new universality class describes Vicsek’s flocking phase in physical dimensions) to enforce that the fluctuations in 𝐠𝐠\mathbf{g}bold_g along the flocking direction vanish (Simplification 1). While physically motivated by the fact that the gxsubscript𝑔𝑥g_{x}italic_g start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT mode is expected to be more “massive” due to the “potential” term U𝑈Uitalic_U, we note that our approximation here is more drastic than the conventional nonlinear sigma constraint (as used, e.g., in the original Toner-Tu treatment [19, 4]) because instead of constraining the fluctuations on the speed, we are constraining fluctuations along the ordered direction.

Besides Simplification 1, we will reduce the complexity further by ignoring all nonlinearities in the TT EOM involving the density field (Simplification 2). This simplification is motivated by the successes in previous studies of variants of the TT model where the density field is neglected [6, 9, 7, 8, 10]. Here, the density and momentum fields are of course still coupled at the linear level, which, as we shall see, leads to novel emergent hydrodynamic behavior.

Linear Theory.—In the flocking phase, the mean magnitude of the momentum field, g=|𝐠|𝑔𝐠g=|\mathbf{g}|italic_g = | bold_g |, is nonzero and we are interested in the fluctuating fields around this flocking state:

δρ=ρρ0,δ𝐠=𝐠g0𝐱^,\delta\rho=\rho-\rho_{0}\ \ \ ,\ \ \ \delta\mathbf{g}=\mathbf{g}-g_{0}\hat{%\mathbf{x}}\ ,italic_δ italic_ρ = italic_ρ - italic_ρ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_δ bold_g = bold_g - italic_g start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT over^ start_ARG bold_x end_ARG ,(7)

where hats denote normalized vectors.We now further partition δ𝐠𝛿𝐠\delta\mathbf{g}italic_δ bold_g into three components that are more natural in our analysis: δ𝐠=δ𝐠x+δ𝐠L+δ𝐠T𝛿𝐠𝛿subscript𝐠𝑥𝛿subscript𝐠𝐿𝛿subscript𝐠𝑇\delta\mathbf{g}=\delta\mathbf{g}_{x}+\delta\mathbf{g}_{L}+\delta\mathbf{g}_{T}italic_δ bold_g = italic_δ bold_g start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT + italic_δ bold_g start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT + italic_δ bold_g start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT, where δ𝐠x=𝐱^(𝐱^δ𝐠)𝛿subscript𝐠𝑥^𝐱^𝐱𝛿𝐠\delta\mathbf{g}_{x}=\hat{\mathbf{x}}(\hat{\mathbf{x}}\cdot\delta\mathbf{g})italic_δ bold_g start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT = over^ start_ARG bold_x end_ARG ( over^ start_ARG bold_x end_ARG ⋅ italic_δ bold_g ), δ𝐠L=𝐪^(𝐪^δ𝐠)𝛿subscript𝐠𝐿subscript^𝐪bottomsubscript^𝐪bottom𝛿𝐠\delta\mathbf{g}_{L}=\hat{\mathbf{q}}_{\bot}(\hat{\mathbf{q}}_{\bot}\cdot%\delta\mathbf{g})italic_δ bold_g start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT = over^ start_ARG bold_q end_ARG start_POSTSUBSCRIPT ⊥ end_POSTSUBSCRIPT ( over^ start_ARG bold_q end_ARG start_POSTSUBSCRIPT ⊥ end_POSTSUBSCRIPT ⋅ italic_δ bold_g ), where𝐪subscript𝐪bottom\mathbf{q}_{\bot}bold_q start_POSTSUBSCRIPT ⊥ end_POSTSUBSCRIPT denotes the wavevector (in spatially transformed Fourier space) perpendicular to the 𝐱𝐱\mathbf{x}bold_x-direction, i.e.,𝐪=𝐪qx𝐱^subscript𝐪bottom𝐪subscript𝑞𝑥^𝐱\mathbf{q}_{\bot}=\mathbf{q}-q_{x}\hat{\mathbf{x}}bold_q start_POSTSUBSCRIPT ⊥ end_POSTSUBSCRIPT = bold_q - italic_q start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT over^ start_ARG bold_x end_ARG and qx=𝐱^𝐪subscript𝑞𝑥^𝐱𝐪q_{x}=\hat{\mathbf{x}}\cdot\mathbf{q}italic_q start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT = over^ start_ARG bold_x end_ARG ⋅ bold_q. Namely, the three components of δ𝐠𝛿𝐠\delta\mathbf{g}italic_δ bold_g correspond to its component along the flocking direction, along the direction of the wavevector (with the 𝐱𝐱\mathbf{x}bold_x-component subtracted), and along the direction perpendicular to both wavevector and flocking direction. Note that Simplification 1 enforces that δ𝐠x=0𝛿subscript𝐠𝑥0\delta\mathbf{g}_{x}=0italic_δ bold_g start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT = 0 here.

We now analyze the scaling behavior of the ordered phase at the linear level, i.e., by first truncating the TT EOM to linear order in δρ,δ𝐠L𝛿𝜌𝛿subscript𝐠𝐿\delta\rho,\delta\mathbf{g}_{L}italic_δ italic_ρ , italic_δ bold_g start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT, and δ𝐠T𝛿subscript𝐠𝑇\delta\mathbf{g}_{T}italic_δ bold_g start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT. The propagators can thus be obtained by inverting the “dynamical matrix” constructed from the linear TT EOM [20]:

𝐆(𝐪~)𝐆~𝐪\displaystyle{\bf G}(\tilde{\mathbf{q}})bold_G ( over~ start_ARG bold_q end_ARG )=𝐆L(𝐪~)+𝐆T(𝐪~),absentsubscript𝐆𝐿~𝐪subscript𝐆𝑇~𝐪\displaystyle={\bf G}_{L}(\tilde{\mathbf{q}})+{\bf G}_{T}(\tilde{\mathbf{q}})\ ,= bold_G start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ( over~ start_ARG bold_q end_ARG ) + bold_G start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ( over~ start_ARG bold_q end_ARG ) ,(8)
𝐆L(𝐪~)subscript𝐆𝐿~𝐪\displaystyle{\bf G}_{L}(\tilde{\mathbf{q}})bold_G start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ( over~ start_ARG bold_q end_ARG )=iωq𝓟L(𝐪)iωq(iωq+iλgqx+μxLqx2+μLq2)+κ1q2,absentisubscript𝜔𝑞subscript𝓟𝐿𝐪isubscript𝜔𝑞isubscript𝜔𝑞isubscript𝜆𝑔subscript𝑞𝑥superscriptsubscript𝜇𝑥𝐿superscriptsubscript𝑞𝑥2superscriptsubscript𝜇bottom𝐿superscriptsubscript𝑞bottom2subscript𝜅1superscriptsubscript𝑞bottom2\displaystyle=\frac{-{\rm i}\omega_{q}\bm{{\cal P}}_{L}(\mathbf{q})}{-{\rm i}%\omega_{q}(-{\rm i}\omega_{q}+{\rm i}\lambda_{g}q_{x}+\mu_{x}^{L}q_{x}^{2}+\mu%_{\bot}^{L}q_{\bot}^{2})+\kappa_{1}q_{\bot}^{2}},= divide start_ARG - roman_i italic_ω start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT bold_caligraphic_P start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ( bold_q ) end_ARG start_ARG - roman_i italic_ω start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( - roman_i italic_ω start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT + roman_i italic_λ start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT italic_q start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT + italic_μ start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_L end_POSTSUPERSCRIPT italic_q start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_μ start_POSTSUBSCRIPT ⊥ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_L end_POSTSUPERSCRIPT italic_q start_POSTSUBSCRIPT ⊥ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) + italic_κ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_q start_POSTSUBSCRIPT ⊥ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ,(9)
𝐆T(𝐪~)subscript𝐆𝑇~𝐪\displaystyle{\bf G}_{T}(\tilde{\mathbf{q}})bold_G start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ( over~ start_ARG bold_q end_ARG )=𝓟T(𝐪)iωq+iλgqx+μxqx2+μq2,absentsubscript𝓟𝑇𝐪isubscript𝜔𝑞isubscript𝜆𝑔subscript𝑞𝑥subscript𝜇𝑥superscriptsubscript𝑞𝑥2subscript𝜇bottomsuperscriptsubscript𝑞bottom2\displaystyle=\frac{\bm{{\cal P}}_{T}(\mathbf{q})}{-{\rm i}\omega_{q}+{\rm i}%\lambda_{g}q_{x}+\mu_{x}q_{x}^{2}+\mu_{\bot}q_{\bot}^{2}}\ ,= divide start_ARG bold_caligraphic_P start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ( bold_q ) end_ARG start_ARG - roman_i italic_ω start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT + roman_i italic_λ start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT italic_q start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT + italic_μ start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT italic_q start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_μ start_POSTSUBSCRIPT ⊥ end_POSTSUBSCRIPT italic_q start_POSTSUBSCRIPT ⊥ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ,(10)

where we have defined 𝐪~=(ωq,𝐪)~𝐪subscript𝜔𝑞𝐪\tilde{\mathbf{q}}=(\omega_{q},\mathbf{q})over~ start_ARG bold_q end_ARG = ( italic_ω start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT , bold_q ), 𝒫L,ij(𝐪)=q^,iq^,jsubscript𝒫𝐿𝑖𝑗𝐪subscript^𝑞bottom𝑖subscript^𝑞bottom𝑗{\cal P}_{L,{ij}}(\mathbf{q})=\hat{q}_{\bot,i}\hat{q}_{\bot,j}caligraphic_P start_POSTSUBSCRIPT italic_L , italic_i italic_j end_POSTSUBSCRIPT ( bold_q ) = over^ start_ARG italic_q end_ARG start_POSTSUBSCRIPT ⊥ , italic_i end_POSTSUBSCRIPT over^ start_ARG italic_q end_ARG start_POSTSUBSCRIPT ⊥ , italic_j end_POSTSUBSCRIPT, and 𝒫T,ij(𝐪)=δijx^ix^jq^,iq^,jsubscript𝒫𝑇𝑖𝑗𝐪subscript𝛿𝑖𝑗subscript^𝑥𝑖subscript^𝑥𝑗subscript^𝑞bottom𝑖subscript^𝑞bottom𝑗{\cal P}_{T,{ij}}(\mathbf{q})=\delta_{ij}-\hat{x}_{i}\hat{x}_{j}-\hat{q}_{\bot%,i}\hat{q}_{\bot,j}caligraphic_P start_POSTSUBSCRIPT italic_T , italic_i italic_j end_POSTSUBSCRIPT ( bold_q ) = italic_δ start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT - over^ start_ARG italic_x end_ARG start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT over^ start_ARG italic_x end_ARG start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT - over^ start_ARG italic_q end_ARG start_POSTSUBSCRIPT ⊥ , italic_i end_POSTSUBSCRIPT over^ start_ARG italic_q end_ARG start_POSTSUBSCRIPT ⊥ , italic_j end_POSTSUBSCRIPT is the projector transverse to the x𝑥xitalic_x and the longitudinal direction. Further we have defined λg=λ1g0subscript𝜆𝑔subscript𝜆1subscript𝑔0\lambda_{g}=\lambda_{1}g_{0}italic_λ start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT = italic_λ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT, μ=μ1subscript𝜇bottomsubscript𝜇1\mu_{\bot}=\mu_{1}italic_μ start_POSTSUBSCRIPT ⊥ end_POSTSUBSCRIPT = italic_μ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT, μx=μ1+μ3g02subscript𝜇𝑥subscript𝜇1subscript𝜇3superscriptsubscript𝑔02\mu_{x}=\mu_{1}+\mu_{3}g_{0}^{2}italic_μ start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT = italic_μ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + italic_μ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT and μL=μ1+μ2superscriptsubscript𝜇bottom𝐿subscript𝜇1subscript𝜇2\mu_{\bot}^{L}=\mu_{1}+\mu_{2}italic_μ start_POSTSUBSCRIPT ⊥ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_L end_POSTSUPERSCRIPT = italic_μ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + italic_μ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT, which are all evaluated at δρ=δ𝐠=0𝛿𝜌𝛿𝐠0\delta\rho=\delta\mathbf{g}=0italic_δ italic_ρ = italic_δ bold_g = 0. Since δ𝐠x=0𝛿subscript𝐠𝑥0\delta\mathbf{g}_{x}=0italic_δ bold_g start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT = 0, 𝐆𝐆{\bf G}bold_G is perpendicular to 𝐱^^𝐱\hat{\bf x}over^ start_ARG bold_x end_ARG.

The equal-time correlation functions can then be obtained in the usual way, giving,

δ𝐠L(t,𝐫)δ𝐠L(t,0)delimited-⟨⟩𝛿subscript𝐠𝐿𝑡𝐫𝛿subscript𝐠𝐿𝑡0\displaystyle\langle\delta\mathbf{g}_{L}(t,\mathbf{r})\delta\mathbf{g}_{L}(t,0)\rangle⟨ italic_δ bold_g start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ( italic_t , bold_r ) italic_δ bold_g start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ( italic_t , 0 ) ⟩=D𝐪ei𝐪𝐫𝓟L(𝐪)μxqx2+μLq2,absent𝐷subscript𝐪superscript𝑒i𝐪𝐫subscript𝓟𝐿𝐪subscript𝜇𝑥superscriptsubscript𝑞𝑥2superscriptsubscript𝜇bottom𝐿superscriptsubscript𝑞bottom2\displaystyle=D\int_{\mathbf{q}}e^{-{\rm i}\mathbf{q}\cdot\mathbf{r}}\frac{\bm%{\mathcal{P}}_{L}(\mathbf{q})}{\mu_{x}q_{x}^{2}+\mu_{\bot}^{L}q_{\bot}^{2}}\ ,= italic_D ∫ start_POSTSUBSCRIPT bold_q end_POSTSUBSCRIPT italic_e start_POSTSUPERSCRIPT - roman_i bold_q ⋅ bold_r end_POSTSUPERSCRIPT divide start_ARG bold_caligraphic_P start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ( bold_q ) end_ARG start_ARG italic_μ start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT italic_q start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_μ start_POSTSUBSCRIPT ⊥ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_L end_POSTSUPERSCRIPT italic_q start_POSTSUBSCRIPT ⊥ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ,(11)
δ𝐠T(t,𝐫)δ𝐠T(t,0)delimited-⟨⟩𝛿subscript𝐠𝑇𝑡𝐫𝛿subscript𝐠𝑇𝑡0\displaystyle\langle\delta\mathbf{g}_{T}(t,\mathbf{r})\delta\mathbf{g}_{T}(t,0)\rangle⟨ italic_δ bold_g start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ( italic_t , bold_r ) italic_δ bold_g start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ( italic_t , 0 ) ⟩=D𝐪ei𝐪𝐫𝓟T(𝐪)μxqx2+μq2,absent𝐷subscript𝐪superscript𝑒i𝐪𝐫subscript𝓟𝑇𝐪subscript𝜇𝑥superscriptsubscript𝑞𝑥2subscript𝜇bottomsuperscriptsubscript𝑞bottom2\displaystyle=D\int_{\mathbf{q}}e^{-{\rm i}\mathbf{q}\cdot\mathbf{r}}\frac{\bm%{\mathcal{P}}_{T}(\mathbf{q})}{\mu_{x}q_{x}^{2}+\mu_{\bot}q_{\bot}^{2}}\ ,= italic_D ∫ start_POSTSUBSCRIPT bold_q end_POSTSUBSCRIPT italic_e start_POSTSUPERSCRIPT - roman_i bold_q ⋅ bold_r end_POSTSUPERSCRIPT divide start_ARG bold_caligraphic_P start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ( bold_q ) end_ARG start_ARG italic_μ start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT italic_q start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_μ start_POSTSUBSCRIPT ⊥ end_POSTSUBSCRIPT italic_q start_POSTSUBSCRIPT ⊥ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ,(12)
δρ(t,𝐫)δρ(t,0)delimited-⟨⟩𝛿𝜌𝑡𝐫𝛿𝜌𝑡0\displaystyle\langle\delta\rho(t,\mathbf{r})\delta\rho(t,0)\rangle⟨ italic_δ italic_ρ ( italic_t , bold_r ) italic_δ italic_ρ ( italic_t , 0 ) ⟩=Dκ1𝐪ei𝐪𝐫1μxqx2+μLq2,absent𝐷subscript𝜅1subscript𝐪superscript𝑒i𝐪𝐫1subscript𝜇𝑥superscriptsubscript𝑞𝑥2superscriptsubscript𝜇bottom𝐿superscriptsubscript𝑞bottom2\displaystyle=\frac{D}{\kappa_{1}}\int_{\mathbf{q}}e^{-{\rm i}\mathbf{q}\cdot%\mathbf{r}}\frac{1}{\mu_{x}q_{x}^{2}+\mu_{\bot}^{L}q_{\bot}^{2}}\ ,= divide start_ARG italic_D end_ARG start_ARG italic_κ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG ∫ start_POSTSUBSCRIPT bold_q end_POSTSUBSCRIPT italic_e start_POSTSUPERSCRIPT - roman_i bold_q ⋅ bold_r end_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG italic_μ start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT italic_q start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_μ start_POSTSUBSCRIPT ⊥ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_L end_POSTSUPERSCRIPT italic_q start_POSTSUBSCRIPT ⊥ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ,(13)

where 𝐪=dd𝐪/(2π)dsubscript𝐪superscript𝑑𝑑𝐪superscript2𝜋𝑑\int_{\mathbf{q}}=\int d^{d}\mathbf{q}/(2\pi)^{d}∫ start_POSTSUBSCRIPT bold_q end_POSTSUBSCRIPT = ∫ italic_d start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT bold_q / ( 2 italic_π ) start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT.In particular, our linear analysis identifies the following scaling exponents χρlin=χlin=(2d)/2,zlin=2formulae-sequencesubscriptsuperscript𝜒lin𝜌superscript𝜒lin2𝑑2superscript𝑧lin2\chi^{\rm lin}_{\rho}=\chi^{\rm lin}=(2-d)/2,z^{\rm lin}=2italic_χ start_POSTSUPERSCRIPT roman_lin end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_ρ end_POSTSUBSCRIPT = italic_χ start_POSTSUPERSCRIPT roman_lin end_POSTSUPERSCRIPT = ( 2 - italic_d ) / 2 , italic_z start_POSTSUPERSCRIPT roman_lin end_POSTSUPERSCRIPT = 2, and ζlin=1superscript𝜁lin1\zeta^{\rm lin}=1italic_ζ start_POSTSUPERSCRIPT roman_lin end_POSTSUPERSCRIPT = 1,which, as expected, are identical to those in previous works [2, 19, 4].

Nonlinear analysis using FRG.— Applying Simplification 2 to eliminate all nonlinearities involving δρ𝛿𝜌\delta\rhoitalic_δ italic_ρ, the only nonlinearities left are terms involving the λ𝜆\lambdaitalic_λ’s and U𝑈Uitalic_U, which become independent of δρ𝛿𝜌\delta\rhoitalic_δ italic_ρ.The standard power counting method (e.g., see [21]) shows that below d=4𝑑4d=4italic_d = 4, the leading order contributions of these nonlinearities (i.e., the λ𝜆\lambdaitalic_λ’s, which are no longer functions of δ𝐠𝛿𝐠\delta\mathbf{g}italic_δ bold_g, and U=β|δ𝐠|2/2𝑈𝛽superscript𝛿𝐠22U=\beta|\delta\mathbf{g}|^{2}/2italic_U = italic_β | italic_δ bold_g | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / 2) can modify the scaling behavior and thus have to be incorporated into the analysis.RG methods provide a systematic way to accomplish this task and we will use here the functional version of the renormalization group based on the exact Wetterich equation [11, 12, 13]:

kΓk=12Tr[(Γk(2)+Rk)1kRk],subscript𝑘subscriptΓ𝑘12Trdelimited-[]superscriptsubscriptsuperscriptΓ2𝑘subscript𝑅𝑘1subscript𝑘subscript𝑅𝑘\partial_{k}\Gamma_{k}=\frac{1}{2}{\rm Tr}\left[\left(\Gamma^{(2)}_{k}+R_{k}%\right)^{-1}\partial_{k}R_{k}\right]\ ,∂ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT roman_Γ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT = divide start_ARG 1 end_ARG start_ARG 2 end_ARG roman_Tr [ ( roman_Γ start_POSTSUPERSCRIPT ( 2 ) end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT + italic_R start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ∂ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_R start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ] ,(14)

where ΓksubscriptΓ𝑘\Gamma_{k}roman_Γ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT is the wavelength (k𝑘kitalic_k) dependent effective average actionand Rksubscript𝑅𝑘R_{k}italic_R start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT is a regulator that serves to control the length scale (1/ksimilar-toabsent1𝑘\sim 1/k∼ 1 / italic_k) beyond which fluctuations are averaged over. The exact flow equation (14) serves to interpolate between the microscopic action ΓΛsubscriptΓΛ\Gamma_{\Lambda}roman_Γ start_POSTSUBSCRIPT roman_Λ end_POSTSUBSCRIPT (where all model details are encoded) and the macroscopic effective average action Γ0subscriptΓ0\Gamma_{0}roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT, from which the EOM for the averages of the fields can be obtained.The trace is a sum over all degrees of freedom, i.e., over all field indices, wavevectors and frequencies, and Γk(2)superscriptsubscriptΓ𝑘2\Gamma_{k}^{(2)}roman_Γ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 2 ) end_POSTSUPERSCRIPT is the matrix containing the second order functional derivatives of ΓksubscriptΓ𝑘\Gamma_{k}roman_Γ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT with respect to the fields. The boundary conditions for ΓksubscriptΓ𝑘\Gamma_{k}roman_Γ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT described above are enforced by requiring that RΛsimilar-tosubscript𝑅ΛR_{\Lambda}\sim\inftyitalic_R start_POSTSUBSCRIPT roman_Λ end_POSTSUBSCRIPT ∼ ∞ and R0=0subscript𝑅00R_{0}=0italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = 0. Otherwise, it can be chosen freely, and in principle Γ0subscriptΓ0\Gamma_{0}roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT is independent of that choice. In practice, we typically constrain the form of the microscopic action ΓΛsubscriptΓΛ\Gamma_{\Lambda}roman_Γ start_POSTSUBSCRIPT roman_Λ end_POSTSUBSCRIPTin order to close the flow equations with a finite number of coefficients, which are now also dependent on k𝑘kitalic_k.

To proceed with our NPRG analysis, we use the Martin-Siggia-Rose-de Dominicis-Janssen formalism [22, 23, 24, 18], introducing the response fields 𝐠¯subscript¯𝐠bottom\bar{\mathbf{g}}_{\bot}over¯ start_ARG bold_g end_ARG start_POSTSUBSCRIPT ⊥ end_POSTSUBSCRIPT and ρ¯¯𝜌\bar{\rho}over¯ start_ARG italic_ρ end_ARG, to obtain a scalar action that describes our theory at the microscopic scale ΛΛ\Lambdaroman_Λ. Making all microscopic couplings dependent on k𝑘kitalic_k (not written explicitly), we obtain an Ansatz for the scale-dependent effective average action,

Γk[𝐠¯,𝐠,ρ¯,ρ]=subscriptΓ𝑘subscript¯𝐠bottomsubscript𝐠bottom¯𝜌𝜌absent\displaystyle\Gamma_{k}[\bar{\mathbf{g}}_{\bot},\mathbf{g}_{\bot},\bar{\rho},%\rho]=roman_Γ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT [ over¯ start_ARG bold_g end_ARG start_POSTSUBSCRIPT ⊥ end_POSTSUBSCRIPT , bold_g start_POSTSUBSCRIPT ⊥ end_POSTSUBSCRIPT , over¯ start_ARG italic_ρ end_ARG , italic_ρ ] =x~{ρ¯[tρ+𝐠]D|𝐠¯|2+𝐠¯[γt𝐠+λ1g0x𝐠+λ1(𝐠)𝐠+λ2𝐠(𝐠)\displaystyle\int_{\tilde{x}}\left\{\bar{\rho}\left[\partial_{t}\rho+\nabla_{%\bot}\cdot\mathbf{g}_{\bot}\right]-D|\bar{\mathbf{g}}_{\bot}|^{2}+\bar{\mathbf%{g}}_{\bot}\cdot\left[\gamma\partial_{t}\mathbf{g}_{\bot}+\lambda_{1}g_{0}%\partial_{x}\mathbf{g}_{\bot}+\lambda_{1}(\mathbf{g}_{\bot}\cdot\nabla_{\bot})%\mathbf{g}_{\bot}+\lambda_{2}\mathbf{g}_{\bot}(\nabla_{\bot}\cdot\mathbf{g}_{%\bot})\right.\right.∫ start_POSTSUBSCRIPT over~ start_ARG italic_x end_ARG end_POSTSUBSCRIPT { over¯ start_ARG italic_ρ end_ARG [ ∂ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT italic_ρ + ∇ start_POSTSUBSCRIPT ⊥ end_POSTSUBSCRIPT ⋅ bold_g start_POSTSUBSCRIPT ⊥ end_POSTSUBSCRIPT ] - italic_D | over¯ start_ARG bold_g end_ARG start_POSTSUBSCRIPT ⊥ end_POSTSUBSCRIPT | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + over¯ start_ARG bold_g end_ARG start_POSTSUBSCRIPT ⊥ end_POSTSUBSCRIPT ⋅ [ italic_γ ∂ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT bold_g start_POSTSUBSCRIPT ⊥ end_POSTSUBSCRIPT + italic_λ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ∂ start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT bold_g start_POSTSUBSCRIPT ⊥ end_POSTSUBSCRIPT + italic_λ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( bold_g start_POSTSUBSCRIPT ⊥ end_POSTSUBSCRIPT ⋅ ∇ start_POSTSUBSCRIPT ⊥ end_POSTSUBSCRIPT ) bold_g start_POSTSUBSCRIPT ⊥ end_POSTSUBSCRIPT + italic_λ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT bold_g start_POSTSUBSCRIPT ⊥ end_POSTSUBSCRIPT ( ∇ start_POSTSUBSCRIPT ⊥ end_POSTSUBSCRIPT ⋅ bold_g start_POSTSUBSCRIPT ⊥ end_POSTSUBSCRIPT )
+12λ3(|𝐠|2)+12β|𝐠|2𝐠μ12𝐠μ1x2𝐠μ2(𝐠)μ3g02x2𝐠+κ1ρ]},\displaystyle\hskip 14.22636pt\left.\left.+\frac{1}{2}\lambda_{3}{\bf\nabla}_{%\bot}(|\mathbf{g}_{\bot}|^{2})+\frac{1}{2}\beta|\mathbf{g}_{\bot}|^{2}\mathbf{%g}_{\bot}-\mu_{1}\nabla_{\bot}^{2}\mathbf{g}_{\bot}-\mu_{1}\partial_{x}^{2}%\mathbf{g}_{\bot}-\mu_{2}\nabla_{\bot}(\nabla_{\bot}\cdot\mathbf{g}_{\bot})-%\mu_{3}g_{0}^{2}\partial_{x}^{2}\mathbf{g}+\kappa_{1}\nabla\rho\right]\right\}\ ,+ divide start_ARG 1 end_ARG start_ARG 2 end_ARG italic_λ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ∇ start_POSTSUBSCRIPT ⊥ end_POSTSUBSCRIPT ( | bold_g start_POSTSUBSCRIPT ⊥ end_POSTSUBSCRIPT | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) + divide start_ARG 1 end_ARG start_ARG 2 end_ARG italic_β | bold_g start_POSTSUBSCRIPT ⊥ end_POSTSUBSCRIPT | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT bold_g start_POSTSUBSCRIPT ⊥ end_POSTSUBSCRIPT - italic_μ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∇ start_POSTSUBSCRIPT ⊥ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT bold_g start_POSTSUBSCRIPT ⊥ end_POSTSUBSCRIPT - italic_μ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∂ start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT bold_g start_POSTSUBSCRIPT ⊥ end_POSTSUBSCRIPT - italic_μ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ∇ start_POSTSUBSCRIPT ⊥ end_POSTSUBSCRIPT ( ∇ start_POSTSUBSCRIPT ⊥ end_POSTSUBSCRIPT ⋅ bold_g start_POSTSUBSCRIPT ⊥ end_POSTSUBSCRIPT ) - italic_μ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ∂ start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT bold_g + italic_κ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∇ italic_ρ ] } ,

where we have defined 𝐠=δ𝐠L+δ𝐠Tsubscript𝐠bottom𝛿subscript𝐠𝐿𝛿subscript𝐠𝑇\mathbf{g}_{\bot}=\delta\mathbf{g}_{L}+\delta\mathbf{g}_{T}bold_g start_POSTSUBSCRIPT ⊥ end_POSTSUBSCRIPT = italic_δ bold_g start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT + italic_δ bold_g start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT.We have also introduced the coefficient γ𝛾\gammaitalic_γ to allow for the potential renormalization of the time-derivative term. Due to its linear structure, the “density sector” (proportional to ρ¯¯𝜌\bar{\rho}over¯ start_ARG italic_ρ end_ARG) does not get renormalized [25, 26], and therefore its coefficients remain unity.

The last ingredient in the FRG formulation is the regulator, which we choose to be [27],

Rk(𝐪~,𝐩~)=Γk(2)(𝐪~,𝐩~)(1Θϵ(|𝐪|k)1),subscript𝑅𝑘~𝐪~𝐩superscriptsubscriptΓ𝑘2~𝐪~𝐩1subscriptΘitalic-ϵsubscript𝐪bottom𝑘1R_{k}(\tilde{\mathbf{q}},\tilde{\mathbf{p}})=\Gamma_{k}^{(2)}(\tilde{\mathbf{q%}},\tilde{\mathbf{p}})\left(\frac{1}{\Theta_{\epsilon}(|\mathbf{q}_{\bot}|-k)}%-1\right)\ ,italic_R start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( over~ start_ARG bold_q end_ARG , over~ start_ARG bold_p end_ARG ) = roman_Γ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 2 ) end_POSTSUPERSCRIPT ( over~ start_ARG bold_q end_ARG , over~ start_ARG bold_p end_ARG ) ( divide start_ARG 1 end_ARG start_ARG roman_Θ start_POSTSUBSCRIPT italic_ϵ end_POSTSUBSCRIPT ( | bold_q start_POSTSUBSCRIPT ⊥ end_POSTSUBSCRIPT | - italic_k ) end_ARG - 1 ) ,(15)

where ΘϵsubscriptΘitalic-ϵ\Theta_{\epsilon}roman_Θ start_POSTSUBSCRIPT italic_ϵ end_POSTSUBSCRIPT is a smooth, nonzero function that approaches the Heaviside function in the limit of ϵ0italic-ϵ0\epsilon\rightarrow 0italic_ϵ → 0, which is to be taken at the end of the calculation. Note that the regulator effectively modifies the propagators with a factor independent of frequency and wavenumber in x𝑥xitalic_x-direction qxsubscript𝑞𝑥q_{x}italic_q start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT. With this property, we are able to evaluate all integrals in the trace of Eq.(14) analytically, except the qxsubscript𝑞𝑥q_{x}italic_q start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT-integral. We further note that since the regulator has the same structure as the propagator, even though it is frequency dependent, causality is preserved [18].

RG fixed points.—With the regulator and ansatz defined, we can now deduce the flow equations, for which we rely on computer algebra due to the complexity of the propagators and interaction terms. Further details are given in Ref.[20].

Integrating the flow equations numerically, we always find a nontrivial stable fixed point. The associated scaling exponents are shown in Fig.1 (blue squares). For dimensions 11/3d<4less-than-or-similar-to113𝑑411/3\lesssim d<411 / 3 ≲ italic_d < 4, the scaling exponents agree with those obtained by Toner and Tu in Refs.[2, 19]:

χTT=32d5,zTT=2(d+1)5,ζTT=d+15.formulae-sequencesuperscript𝜒TT32𝑑5formulae-sequencesuperscript𝑧TT2𝑑15superscript𝜁TT𝑑15\chi^{\rm TT}=\frac{3-2d}{5}\ ,\ \ z^{\rm TT}=\frac{2(d+1)}{5}\ ,\ \ \zeta^{%\rm TT}=\frac{d+1}{5}\ .\\italic_χ start_POSTSUPERSCRIPT roman_TT end_POSTSUPERSCRIPT = divide start_ARG 3 - 2 italic_d end_ARG start_ARG 5 end_ARG , italic_z start_POSTSUPERSCRIPT roman_TT end_POSTSUPERSCRIPT = divide start_ARG 2 ( italic_d + 1 ) end_ARG start_ARG 5 end_ARG , italic_ζ start_POSTSUPERSCRIPT roman_TT end_POSTSUPERSCRIPT = divide start_ARG italic_d + 1 end_ARG start_ARG 5 end_ARG .(16)

Intriguingly, below d11/3𝑑113d\approx 11/3italic_d ≈ 11 / 3, the values of the exponents are found to agree with the new formula shown inEq.(2), until for d2.4less-than-or-similar-to𝑑2.4d\lesssim 2.4italic_d ≲ 2.4 when the RG flow seems to become divergent. We hypothesize that the divergence is due to our truncation/simplification of the scale-dependent average action, as we reason that the density-dependent couplings could become more important in lower dimensions and potentially stabilize the RG flow.

We interpret our findings as follows. The flocking phase of our simplified TT model is generically described by the TT UC for 11/3<d<4113𝑑411/3<d<411 / 3 < italic_d < 4. Below d<11/3𝑑113d<11/3italic_d < 11 / 3, a new stable RG fixed point, with scaling behavior given by Eq.(2), emerges. And comparing the values of the exponents obtained using Eq.(2) to a recent simulation study [5] (red stars in Fig.1), we believe that the UC uncovered here describes the ordered phase of the Vicsek model. Schematics of the RG flows illustrating the stability exchange between the TT UC and the UC described here are shown in Fig.2 in terms of the anomalous dimensions ηsubscript𝜂bottom\eta_{\bot}italic_η start_POSTSUBSCRIPT ⊥ end_POSTSUBSCRIPT and ηxsubscript𝜂𝑥\eta_{x}italic_η start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT, defined as the graphical corrections of μsubscript𝜇bottom\mu_{\bot}italic_μ start_POSTSUBSCRIPT ⊥ end_POSTSUBSCRIPT and μxsubscript𝜇𝑥\mu_{x}italic_μ start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT,

llogμsubscript𝑙subscript𝜇bottom\displaystyle\partial_{l}\log\mu_{\bot}∂ start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT roman_log italic_μ start_POSTSUBSCRIPT ⊥ end_POSTSUBSCRIPT=z2+η,absent𝑧2subscript𝜂bottom\displaystyle=z-2+\eta_{\bot}\ ,= italic_z - 2 + italic_η start_POSTSUBSCRIPT ⊥ end_POSTSUBSCRIPT ,(17)
llogμxsubscript𝑙subscript𝜇𝑥\displaystyle\partial_{l}\log\mu_{x}∂ start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT roman_log italic_μ start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT=z2ζ+ηx.absent𝑧2𝜁subscript𝜂𝑥\displaystyle=z-2\zeta+\eta_{x}\ .= italic_z - 2 italic_ζ + italic_η start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT .(18)
A new universality class describes Vicsek’s flocking phase in physical dimensions (2)

Analytical Treatment.—We will now go beyond our numerical FRG calculation by using an analytical approach, whose advantage is threefold: i) to obtain analytical expressions of the scaling exponents (2) beyond relying on fitting the numerical results; ii) to understand why the values of the exponents seem to be quantitatively accurate in d=2,3𝑑23d=2,3italic_d = 2 , 3, as compared to simulations, even with drastic truncations/approximations adopted, and iii) to verify the exchange of stability between the TT UC and our new UC at d11/3𝑑113d\approx 11/3italic_d ≈ 11 / 3.

To make analytical process, we start by noting that within the linear theory, the “compressibility” term κ1δρsubscript𝜅1subscriptbottom𝛿𝜌\kappa_{1}{\bf\nabla}_{\bot}\delta\rhoitalic_κ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∇ start_POSTSUBSCRIPT ⊥ end_POSTSUBSCRIPT italic_δ italic_ρ and the advective term λgxδ𝐠λ1g0xδ𝐠subscript𝜆𝑔subscript𝑥𝛿𝐠subscript𝜆1subscript𝑔0subscript𝑥𝛿𝐠\lambda_{g}\partial_{x}\delta\mathbf{g}\equiv\lambda_{1}g_{0}\partial_{x}%\delta\mathbf{g}italic_λ start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT ∂ start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT italic_δ bold_g ≡ italic_λ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ∂ start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT italic_δ bold_g are expected to diverge as k0𝑘0k\rightarrow 0italic_k → 0, on account of their scaling dimensions based on both linear and nonlinear analyses. We can therefore approximate the flow equations by assuming the divergence of these terms (or more specifically their dimensionless versions: κ¯1=κ1γ/μ2k2subscript¯𝜅1subscript𝜅1𝛾superscriptsubscript𝜇bottom2superscript𝑘2\bar{\kappa}_{1}=\kappa_{1}\gamma/\mu_{\bot}^{2}k^{2}over¯ start_ARG italic_κ end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = italic_κ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_γ / italic_μ start_POSTSUBSCRIPT ⊥ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT and λ¯g=λg/μμxksubscript¯𝜆𝑔subscript𝜆𝑔subscript𝜇bottomsubscript𝜇𝑥𝑘\bar{\lambda}_{g}=\lambda_{g}/\sqrt{\mu_{\bot}\mu_{x}}kover¯ start_ARG italic_λ end_ARG start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT = italic_λ start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT / square-root start_ARG italic_μ start_POSTSUBSCRIPT ⊥ end_POSTSUBSCRIPT italic_μ start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT end_ARG italic_k) [20]. Taking this limit, some of the graphical corrections (for λ1subscript𝜆1\lambda_{1}italic_λ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT, D𝐷Ditalic_D and λgsubscript𝜆𝑔\lambda_{g}italic_λ start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT) vanish, while others (λ2subscript𝜆2\lambda_{2}italic_λ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT, λ3subscript𝜆3\lambda_{3}italic_λ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT, μsubscript𝜇bottom\mu_{\bot}italic_μ start_POSTSUBSCRIPT ⊥ end_POSTSUBSCRIPT, and μLsuperscriptsubscript𝜇bottom𝐿\mu_{\bot}^{L}italic_μ start_POSTSUBSCRIPT ⊥ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_L end_POSTSUPERSCRIPT) become finite, but completely independent of κ¯1subscript¯𝜅1\bar{\kappa}_{1}over¯ start_ARG italic_κ end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and λ¯gsubscript¯𝜆𝑔\bar{\lambda}_{g}over¯ start_ARG italic_λ end_ARG start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT [20].

Unexpectedly, different behaviour is observed for the graphical corrections of μxsubscript𝜇𝑥\mu_{x}italic_μ start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT,

ηx=2D2(d2)μx2qx2h~𝒫T,im(𝐪)Vijn(𝐪,𝐡)Gna(𝐡~)subscript𝜂𝑥2𝐷2𝑑2subscript𝜇𝑥superscript2superscriptsubscript𝑞𝑥2subscript~subscript𝒫𝑇𝑖𝑚𝐪subscript𝑉𝑖𝑗𝑛𝐪𝐡subscript𝐺𝑛𝑎~𝐡\displaystyle\eta_{x}=\frac{2D}{2(d-2)\mu_{x}}\frac{\partial^{2}}{\partial q_{%x}^{2}}\int_{\tilde{h}}\mathcal{P}_{T,im}(\mathbf{q})V_{ijn}(\mathbf{q},%\mathbf{h})G_{na}(\tilde{\mathbf{h}})italic_η start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT = divide start_ARG 2 italic_D end_ARG start_ARG 2 ( italic_d - 2 ) italic_μ start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT end_ARG divide start_ARG ∂ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG ∂ italic_q start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ∫ start_POSTSUBSCRIPT over~ start_ARG italic_h end_ARG end_POSTSUBSCRIPT caligraphic_P start_POSTSUBSCRIPT italic_T , italic_i italic_m end_POSTSUBSCRIPT ( bold_q ) italic_V start_POSTSUBSCRIPT italic_i italic_j italic_n end_POSTSUBSCRIPT ( bold_q , bold_h ) italic_G start_POSTSUBSCRIPT italic_n italic_a end_POSTSUBSCRIPT ( over~ start_ARG bold_h end_ARG )(19)
×Gab(𝐡~)Vbkm(𝐪𝐡,𝐡)Gik(𝐪~𝐡~)δ(|𝐡|k)|𝐪~=0absentevaluated-atsubscript𝐺𝑎𝑏~𝐡subscript𝑉𝑏𝑘𝑚𝐪𝐡𝐡subscript𝐺𝑖𝑘~𝐪~𝐡𝛿superscript𝐡bottom𝑘~𝐪0\displaystyle\left.\times G_{ab}(-\tilde{\mathbf{h}})V_{bkm}(\mathbf{q}-%\mathbf{h},-\mathbf{h})G_{ik}(\tilde{\mathbf{q}}-\tilde{\mathbf{h}})\delta(|%\mathbf{h}^{\bot}|-k)\right|_{\tilde{\mathbf{q}}=0}× italic_G start_POSTSUBSCRIPT italic_a italic_b end_POSTSUBSCRIPT ( - over~ start_ARG bold_h end_ARG ) italic_V start_POSTSUBSCRIPT italic_b italic_k italic_m end_POSTSUBSCRIPT ( bold_q - bold_h , - bold_h ) italic_G start_POSTSUBSCRIPT italic_i italic_k end_POSTSUBSCRIPT ( over~ start_ARG bold_q end_ARG - over~ start_ARG bold_h end_ARG ) italic_δ ( | bold_h start_POSTSUPERSCRIPT ⊥ end_POSTSUPERSCRIPT | - italic_k ) | start_POSTSUBSCRIPT over~ start_ARG bold_q end_ARG = 0 end_POSTSUBSCRIPT
Fx(λ¯1,λ¯2,λ¯3,g¯0,κ¯1),absentsubscript𝐹𝑥subscript¯𝜆1subscript¯𝜆2subscript¯𝜆3subscript¯𝑔0subscript¯𝜅1\displaystyle\equiv F_{x}(\bar{\lambda}_{1},\bar{\lambda}_{2},\bar{\lambda}_{3%},\bar{g}_{0},\bar{\kappa}_{1})\ ,≡ italic_F start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ( over¯ start_ARG italic_λ end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , over¯ start_ARG italic_λ end_ARG start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , over¯ start_ARG italic_λ end_ARG start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT , over¯ start_ARG italic_g end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , over¯ start_ARG italic_κ end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) ,

where h~ddh𝑑ωh/(2π)(d+1)subscript~superscript𝑑𝑑differential-dsubscript𝜔superscript2𝜋𝑑1\int_{\tilde{h}}d^{d}hd\omega_{h}/(2\pi)^{(d+1)}∫ start_POSTSUBSCRIPT over~ start_ARG italic_h end_ARG end_POSTSUBSCRIPT italic_d start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT italic_h italic_d italic_ω start_POSTSUBSCRIPT italic_h end_POSTSUBSCRIPT / ( 2 italic_π ) start_POSTSUPERSCRIPT ( italic_d + 1 ) end_POSTSUPERSCRIPT and Vijnsubscript𝑉𝑖𝑗𝑛V_{ijn}italic_V start_POSTSUBSCRIPT italic_i italic_j italic_n end_POSTSUBSCRIPT is the three-point momentum density vertex (shown in Ref.[20]). First, contrarily to the other corrections, the limit of large κ¯1subscript¯𝜅1\bar{\kappa}_{1}over¯ start_ARG italic_κ end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and λ¯gsubscript¯𝜆𝑔\bar{\lambda}_{g}over¯ start_ARG italic_λ end_ARG start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT does not commute with the integral over hxsubscript𝑥h_{x}italic_h start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT in Eq.(19). If the limit is performed before the integral, one would incorrectly conclude that this correction vanishes. Evaluated in the correct order however, we find via numerical evaluation of Eq.(19) that, as both κ¯1subscript¯𝜅1\bar{\kappa}_{1}over¯ start_ARG italic_κ end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and λ¯gsubscript¯𝜆𝑔\bar{\lambda}_{g}over¯ start_ARG italic_λ end_ARG start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT diverge, and λ¯1subscript¯𝜆1\bar{\lambda}_{1}over¯ start_ARG italic_λ end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT, λ¯2subscript¯𝜆2\bar{\lambda}_{2}over¯ start_ARG italic_λ end_ARG start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT and λ¯3subscript¯𝜆3\bar{\lambda}_{3}over¯ start_ARG italic_λ end_ARG start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT approach a fixed point value (marked by an asterisk), the function Fxsubscript𝐹𝑥F_{x}italic_F start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT behaves asymptotically as

Fx(λ¯1,λ¯2,λ¯3,λ¯g,κ¯1)F¯x(λ¯1*,λ¯2*,λ¯3*,λ¯g13κ¯17),subscript𝐹𝑥subscript¯𝜆1subscript¯𝜆2subscript¯𝜆3subscript¯𝜆𝑔subscript¯𝜅1subscript¯𝐹𝑥superscriptsubscript¯𝜆1superscriptsubscript¯𝜆2superscriptsubscript¯𝜆3superscriptsubscript¯𝜆𝑔13superscriptsubscript¯𝜅17F_{x}(\bar{\lambda}_{1},\bar{\lambda}_{2},\bar{\lambda}_{3},\bar{\lambda}_{g},%\bar{\kappa}_{1})\rightarrow\bar{F}_{x}\left(\bar{\lambda}_{1}^{*},\bar{%\lambda}_{2}^{*},\bar{\lambda}_{3}^{*},\frac{\bar{\lambda}_{g}^{13}}{\bar{%\kappa}_{1}^{7}}\right)\ ,italic_F start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ( over¯ start_ARG italic_λ end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , over¯ start_ARG italic_λ end_ARG start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , over¯ start_ARG italic_λ end_ARG start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT , over¯ start_ARG italic_λ end_ARG start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT , over¯ start_ARG italic_κ end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) → over¯ start_ARG italic_F end_ARG start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ( over¯ start_ARG italic_λ end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT , over¯ start_ARG italic_λ end_ARG start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT , over¯ start_ARG italic_λ end_ARG start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT , divide start_ARG over¯ start_ARG italic_λ end_ARG start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 13 end_POSTSUPERSCRIPT end_ARG start_ARG over¯ start_ARG italic_κ end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 7 end_POSTSUPERSCRIPT end_ARG ) ,(20)

where asterisks denote fixed point values and F¯xsubscript¯𝐹𝑥\bar{F}_{x}over¯ start_ARG italic_F end_ARG start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT has the asymptotic properties, F¯x(λ¯1,λ¯2,λ¯3,0)=0subscript¯𝐹𝑥subscript¯𝜆1subscript¯𝜆2subscript¯𝜆300\bar{F}_{x}(\bar{\lambda}_{1},\bar{\lambda}_{2},\bar{\lambda}_{3},0)=0over¯ start_ARG italic_F end_ARG start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ( over¯ start_ARG italic_λ end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , over¯ start_ARG italic_λ end_ARG start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , over¯ start_ARG italic_λ end_ARG start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT , 0 ) = 0 and limxF¯x(λ¯1,λ¯2,λ¯3,x)=subscript𝑥subscript¯𝐹𝑥subscript¯𝜆1subscript¯𝜆2subscript¯𝜆3𝑥\lim_{x\rightarrow\infty}\bar{F}_{x}(\bar{\lambda}_{1},\bar{\lambda}_{2},\bar{%\lambda}_{3},x)=\inftyroman_lim start_POSTSUBSCRIPT italic_x → ∞ end_POSTSUBSCRIPT over¯ start_ARG italic_F end_ARG start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ( over¯ start_ARG italic_λ end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , over¯ start_ARG italic_λ end_ARG start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , over¯ start_ARG italic_λ end_ARG start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT , italic_x ) = ∞ [20]. The flow equations therefore only allow a fixed point for two possible scenarios. Either κ¯1subscript¯𝜅1\bar{\kappa}_{1}over¯ start_ARG italic_κ end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT tends to infinity fast enough such that λ¯g13κ¯17much-less-thansuperscriptsubscript¯𝜆𝑔13superscriptsubscript¯𝜅17\bar{\lambda}_{g}^{13}\ll\bar{\kappa}_{1}^{7}over¯ start_ARG italic_λ end_ARG start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 13 end_POSTSUPERSCRIPT ≪ over¯ start_ARG italic_κ end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 7 end_POSTSUPERSCRIPT, in which case Fx=ηx=0subscript𝐹𝑥subscript𝜂𝑥0F_{x}=\eta_{x}=0italic_F start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT = italic_η start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT = 0 and the TT UC is recovered, or κ¯1subscript¯𝜅1\bar{\kappa}_{1}over¯ start_ARG italic_κ end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and λ¯gsubscript¯𝜆𝑔\bar{\lambda}_{g}over¯ start_ARG italic_λ end_ARG start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT diverge in such a way that the ratio λ¯g13/κ¯17superscriptsubscript¯𝜆𝑔13superscriptsubscript¯𝜅17\bar{\lambda}_{g}^{13}/\bar{\kappa}_{1}^{7}over¯ start_ARG italic_λ end_ARG start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 13 end_POSTSUPERSCRIPT / over¯ start_ARG italic_κ end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 7 end_POSTSUPERSCRIPT approaches a constant value, leading to the new UC uncovered here. Specifically, since neither λ¯gsubscript¯𝜆𝑔\bar{\lambda}_{g}over¯ start_ARG italic_λ end_ARG start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT nor κ¯1subscript¯𝜅1\bar{\kappa}_{1}over¯ start_ARG italic_κ end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT receive any graphical corrections in this limit, using the standard rescaling, we can write down an effective flow equation for λ¯κ=λ¯g13/κ¯17subscript¯𝜆𝜅superscriptsubscript¯𝜆𝑔13superscriptsubscript¯𝜅17\bar{\lambda}_{\kappa}=\bar{\lambda}_{g}^{13}/\bar{\kappa}_{1}^{7}over¯ start_ARG italic_λ end_ARG start_POSTSUBSCRIPT italic_κ end_POSTSUBSCRIPT = over¯ start_ARG italic_λ end_ARG start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 13 end_POSTSUPERSCRIPT / over¯ start_ARG italic_κ end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 7 end_POSTSUPERSCRIPT:

lλ¯κ=[13(zζ)7(2z2)]λ¯κ,subscript𝑙subscript¯𝜆𝜅delimited-[]13𝑧𝜁72𝑧2subscript¯𝜆𝜅\partial_{l}\bar{\lambda}_{\kappa}=[13(z-\zeta)-7(2z-2)]\bar{\lambda}_{\kappa}\ ,∂ start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT over¯ start_ARG italic_λ end_ARG start_POSTSUBSCRIPT italic_κ end_POSTSUBSCRIPT = [ 13 ( italic_z - italic_ζ ) - 7 ( 2 italic_z - 2 ) ] over¯ start_ARG italic_λ end_ARG start_POSTSUBSCRIPT italic_κ end_POSTSUBSCRIPT ,(21)

with precisely two fixed points: either λ¯κ=0subscript¯𝜆𝜅0\bar{\lambda}_{\kappa}=0over¯ start_ARG italic_λ end_ARG start_POSTSUBSCRIPT italic_κ end_POSTSUBSCRIPT = 0 or λ¯κ=constsubscript¯𝜆𝜅const\bar{\lambda}_{\kappa}={\rm const}over¯ start_ARG italic_λ end_ARG start_POSTSUBSCRIPT italic_κ end_POSTSUBSCRIPT = roman_const. In the latter case, the exponents have to fulfill the hyperscaling relation:

13(zζ)7(2z2)=0.13𝑧𝜁72𝑧2013(z-\zeta)-7(2z-2)=0\ .13 ( italic_z - italic_ζ ) - 7 ( 2 italic_z - 2 ) = 0 .(22)

Together with the scaling relations from the vanishing graphical corrections for λ1subscript𝜆1\lambda_{1}italic_λ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and D𝐷Ditalic_D (also obtained in Refs [2, 19]):

llogλ1subscript𝑙subscript𝜆1\displaystyle\partial_{l}\log\lambda_{1}∂ start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT roman_log italic_λ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT=z1+χ=0,absent𝑧1𝜒0\displaystyle=z-1+\chi=0\ ,= italic_z - 1 + italic_χ = 0 ,(23)
llogDsubscript𝑙𝐷\displaystyle\partial_{l}\log D∂ start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT roman_log italic_D=z2χζ(d1)=0,absent𝑧2𝜒𝜁𝑑10\displaystyle=z-2\chi-\zeta-(d-1)=0\ ,= italic_z - 2 italic_χ - italic_ζ - ( italic_d - 1 ) = 0 ,(24)

we can determine the analytical expressions of the exponents in Eq.(2). Further, our calculation here applies below d2.4similar-to𝑑2.4d\sim 2.4italic_d ∼ 2.4, thus extending our numerical FRG results to d=2.

Since the exponents are determined by the various scaling relations and therefore independent of the exact locations of the fixed points, we believe them to be robust against approximations. Indeed, exact exponents have been claimed for diverse systems based on scaling relations [28, 2, 9, 29, 30, 31, 32]. Further testing the exactness of the exponents (2), via simulation or numerical FRG methods, will thus be of great interest.

Finally, we can support the scenario regarding the exchange of stabilities between the TT UC and our novel UC (Fig.2) by expanding Eq.(21) around the TT fixed point at λ¯κ=0subscript¯𝜆𝜅0\bar{\lambda}_{\kappa}=0over¯ start_ARG italic_λ end_ARG start_POSTSUBSCRIPT italic_κ end_POSTSUBSCRIPT = 0,

lδλκ=(113d)δλκ,subscript𝑙𝛿subscript𝜆𝜅113𝑑𝛿subscript𝜆𝜅\partial_{l}\delta\lambda_{\kappa}=(11-3d)\ \delta\lambda_{\kappa}\ ,∂ start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT italic_δ italic_λ start_POSTSUBSCRIPT italic_κ end_POSTSUBSCRIPT = ( 11 - 3 italic_d ) italic_δ italic_λ start_POSTSUBSCRIPT italic_κ end_POSTSUBSCRIPT ,(25)

which clearly becomes unstable below d<dc=11/3𝑑superscriptsubscript𝑑𝑐113d<d_{c}^{\prime}=11/3italic_d < italic_d start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT = 11 / 3. Further supporting evidence is that the exponents of both TT UC (16) and our UC (2) coincide at d=11/3𝑑113d=11/3italic_d = 11 / 3, as expected from such an exchange of fixed point stabilities.

Summary & Outlook.—The Vicsek model together with the Toner-Tu theoretical formulation of polar active fluids helped propel active matter physics into a well-known discipline of physics today, and along the way inspired diverse variations of flocking models that are found to correspond to many novel UCs [8, 33, 6, 9, 34, 29, 35, 10, 36, 37, 31, 38, 39, 40, 26, 32, 41].Ironically, the UC that governs Vicsek’s original flocking phase has remained unknown, perhaps until now.Besides potentially explaining the universal flocking behavior of the Vicsek model, our nonperturbative, FRG calculation may also refute the recent questioning of the stability of the flocking phase [42, 43] in d=2,3𝑑23d=2,3italic_d = 2 , 3, at least when the active systems are deep enough in the ordered phase.

Going beyond, an immediate open question is: why would Vicsek’s flocking phase correspond to the simplified TT model considered here? Another open question iswhether the ordered phase of the general TT model (without imposing our simplifications) also corresponds to the UC uncovered in this work.Finally, the RG has traditionally been perceived as less of a quantitative tool but more of a conceptual means to elucidating the underlying physics [44]; in contrast, our work shows that RG methodology can quantify physical properties accurately, thus demonstrating the power of the RG not readily appreciated by many physicists. Indeed, FRG methodology has already been used in several other disciplines of physics to provide quantitatively accurate predictions of both universal and nonuniversal quantities [17]. We believe that similar developments in active matter physics will be very fruitful.

References

A new universality class describes Vicsek’s flocking phase in physical dimensions (2024)
Top Articles
Latest Posts
Article information

Author: Prof. An Powlowski

Last Updated:

Views: 6323

Rating: 4.3 / 5 (44 voted)

Reviews: 83% of readers found this page helpful

Author information

Name: Prof. An Powlowski

Birthday: 1992-09-29

Address: Apt. 994 8891 Orval Hill, Brittnyburgh, AZ 41023-0398

Phone: +26417467956738

Job: District Marketing Strategist

Hobby: Embroidery, Bodybuilding, Motor sports, Amateur radio, Wood carving, Whittling, Air sports

Introduction: My name is Prof. An Powlowski, I am a charming, helpful, attractive, good, graceful, thoughtful, vast person who loves writing and wants to share my knowledge and understanding with you.